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Abstract

LetM be ann-dimensional complete non-compact space-like submanifold in a pseudo-Euclidean
SpaceRn+pp of indexp. In this paper, we find sufficient conditions forM to have only one end or
finitely many ends.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction and main results

Let Rn+pp be an(n + p)-dimensional pseudo-Euclidean space of indexn, namely the
vector spaceRn+p endowed with the metric

〈, 〉 = (dx1)2 + · · · + (dxn)2 − (dxn+1)2 − · · · − (dxn+p)2,
where(x1, . . . , xn+p) are the canonical coordinates inRn+pp . A smooth immersionψ :
M → Rn+p of ann-dimensional manifoldM is said to be aspace-like submanifold, if the
induced metric viaψ is a Riemannian metric onM which, is also denoted by〈, 〉.

Space-like submanifolds have been studied extensively. Calabi raised the Bernstein prob-
lem for space-like extremal hypersurfaces in Minkowski spaceRn+1

1 , and proved that such

∗ Corresponding author. Tel.:+55-612733356x257; fax:+55-612732737.
E-mail addresses:wang@mat.unb.br (Q. Wang), xia@mat.unb.br (C. Xia).

0393-0440/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.geomphys.2004.04.005



448 Q. Wang, C. Xia / Journal of Geometry and Physics 52 (2004) 447–457

hypersurfaces have to be hyperplanes whenn ≤ 4 [2]. Cheng and Yau solved the prob-
lem for alln [5]. Generalizing an earlier result of Palmer[16], Xin [19] has characterized
space-like hyperplanes as the only complete constant mean curvature space-like hypersur-
faces inRn+1

1 whose image under the Gauss map is bounded in the hyperbolic space. Later,
by an elegant argument the above theorem of Xin was improved by Cao et al.[4] and Xin and
Ye [21] independently. They showed that a complete space-like hypersurface of constant
mean curvature inRn+1

1 whose image under the Gauss map is contained in a horoball of the
hyperbolic spaceHn+1(−1) is a hyperplane. By using the maximum principle due to Omori
[15], Aledo and Alias[1] have shown that the only complete space-like hypersurfaces of
constant mean curvature inRn+1

1 which are bounded between two parallel space-like hy-
perplanes are the space-like hyperplanes. It should be mentioned that the corresponding
result of Aledo–Alias’ theorem for minimal surfaces in Euclidean 3-space turns out to be
false[8]. On the other hand, Treibergs[18] constructed many non-linear examples of com-
plete space-like hypersurfaces with non-zero constant mean curvature. Recently, in a series
of interesting papers, Xin[20] and Jost and Xin[9–11] proved various metric uniqueness
theorems for space-like submanifolds inRn+pp with parallel mean curvature vectors.

In this paper, we study the topology of space-like submanifolds inRn+pp by using a nice
idea of Cao et al. in[3]. Our first result can be stated as follows.

Theorem 1.1. Let M be ann(≥3)-dimensional complete,non-compact, immersed space-like
submanifold inRn+pp and denote byH the mean curvature vector of M. Assume that the
Sobolev inequality holds on M, that is, there exists a constantc > 0, such that

c

(∫
M

|ψ|n/(n−1)
)(n−1)/n

≤
∫
M

|∇ψ|, (1.1)

for any compactly supported functionψ ∈ H1,2(M). If the total mean curvature of M
satisfies∫

M

|H|n ≤
(
(n− 2)c

(n− 1)n

)n
, (1.2)

then M has only one end.

It should be noticed that the submanifolds inTheorem 1.1are not required to have parallel
mean curvature vectors. We believe that the Sobolev inequality actually holds on space-like
submanifolds inRn+pp with small total mean curvature.

In order to proveTheorem 1.1, we firstly establish a non-existence theorem for non-constant
harmonic maps with finite energy. That is, we have

Theorem 1.2. Let M be ann(≥3)-dimensional complete,non-compact, immersed space-like
submanifold inRn+pp . Assume that the inequalities(1.1) and (1.2)hold. Then any harmonic
map with finite energy from M to a complete manifold with non-positive curvature is a con-
stant. In particular, any harmonic function on M with finite Dirichlet energy is constant.

Theorem 1.1is a consequence ofTheorem 1.2and an existence theorem for non-constant
harmonic functions with finite Dirichlet energy (seeLemma 3.1).
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We fix some notation in order to state our next result. LetM be a complete Riemannian
manifold, and letq : M → R be a differentiable function. Consider the elliptic operator
L = �+ q associated to the quadratic form:

(f,−Lf) = −
∫
M

fLf =
∫
M

(|∇f |2 − qf2).

Heref : M → R is a piecewise smooth function with compact support,� is the Laplacian
and∇f is the gradient off . The index ofL is defined to be the supremum, over compact
domains ofM, of the number of negative eigenvalues ofLwith Dirichlet boundary condition.

Now we can state our next theorem as follows.

Theorem 1.3. Let M be ann(≥3)-dimensional complete,non-compact, immersed space-like
submanifold inRn+pp and assume that the Sobolev inequality(1.1)holds on M.

(i) If the index of the operator�+ (n2/4)|H|2 is zero, then M has only one end.
(ii) If �+ (n2/4)|H|2 has finite index, then M has finitely many ends.

2. Preliminaries

In this section, we list some known facts about space-like submanifolds inRn+pp and
harmonic maps between Riemannian manifolds.

Let M be ann-dimensional complete space-like submanifold inRn+pp . Choose a lo-
cal Lorentzian frame field{e1, . . . , en, en+1, . . . , en+p} alongM with dual frame field
{w1, . . . , wn,wn+1, . . . , wn+p} such thate1, . . . , en, are tangent toM. Let {wAB}n+pA,B=1
be the corresponding connection forms. We agree with the following range of indices:

i, j, k, . . . = 1, . . . , n; s, t, . . . = n+ 1, . . . , n+ p.
The induced Riemmanian metric ofM is given by ds2M = ∑

i w
2
i and the structure equations

ofM are

dwi =
∑
k

wik ∧ wk, wij + wji = 0,

Ωij = dwij −
∑
k

wik ∧ wkj = −1

2

∑
k,l

Rijklwk ∧ wl,

where(Rijkl ) is the curvature tensor ofM. The Gauss equation ofM is given by

dwij =
∑
k

wik ∧ wkj −
∑
s

wis ∧ wsj.

By Cartan’s lemma we have

wsi =
∑
j

hsijwj,
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wherehsij are the components of the second fundamental form ofM in Rn+pp . We have from
the Gauss equation that

Rijkl = −
∑
s

(hsikh
s
jl − hsilhsjk).

The mean curvature vector ofM in Rn+pp is defined by

H = 1

n

∑
s,i

hsii es.

The Ricci tensor ofM is given by

Rij =
∑
k

Rkikj = −
∑
s,k

(hskkh
s
jl − hsklh

s
jk),

from which it follows that

RicM ≥ −1
4n

2|H|2. (2.1)

Now letN be a complete Riemannian manifold of dimensionm and letf : M → N be
a harmonic map. Take a local orthonormal frame{ēα}mα=1 of N and denote by{θα}mα=1 the
dual coframe and by{θαβ}mα,β=1 the corresponding connection forms. Let(Kαβγδ) be the
curvature tensor ofN; then we have:

dθα =
∑
β

θαβ ∧ θβ, θαβ + θβα = 0,

dθαβ =
∑
γ

θαγ ∧ θγβ − 1

2

∑
γ,δ

Kαβγδθγθδ.

Definefαi, 1 ≤ α ≤ m,1 ≤ i ≤ n by

f ∗(θα) =
∑
i

fαiwi. (2.2)

The energy densitye(f) is given by

e(f) =
∑
αi

f 2
αi.

Taking the exterior differentiation of(2.2), we get

f ∗(dθα) =
∑
i

(dfαi ∧ wi + fαi dwi),

which gives

∑
i


dfαi −

∑
j

fαjwij − f ∗(θαβ)fβi


 ∧ wi = 0. (2.3)
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Definefαij by

dfαi +
∑
β

fβif
∗(θβα)+

∑
j

fαjwji =
∑
j

fαijwj. (2.4)

Then(2.3) and (2.4)imply thatfαij = fαji andf is harmonic means∑
i

fαii = 0, ∀ α = 1, . . . , m.

Exterior differentiating(2.4), we get

∑
l


dfαil +

∑
j

(fαijwjl + fαjlwji )+
∑
β

fβilf
∗(θβα)


 ∧ wl

= 1

2

∑
j,k,l

Rijklfαjwk ∧ wl + 1

2

∑
β,δ,γ,k,l

Kαβγδfβifγkfδlwk ∧ wl. (2.5)

Define∑
k

fαijkwk = dfαij +
∑
k

(fαikwkj + fαkjwki)+
∑
β

fβijf
∗(θαβ);

then(2.5) implies that

fαikl − fαilk =
∑
j

Rijlkfαj +
∑
β,γ,δ

Kαβγδfβifγlfδk.

Sete = e(f) and let� be the Laplacian operator acting on functions onM. From the above
formula, one can easily get the following Bochner type formula for harmonic maps between
Riemannian manifolds[6]:

1

2
�e =

∑
α,i,j

f 2
αij +

∑
α,i,j

Rijfαifαj −
∑

α,β,γ,δ,i,j

Kαβγδfαifβifγifδj. (2.6)

The following estimate was made by Schoen and Yau in[17]:∑
α,i,j

f 2
αij ≥

(
1 + 1

2nm

)
|∇√

e|2. (2.7)

Recall (see[12]) that an endE of a complete manifoldM is non-parabolic ifE admits a
positive Green’s function with Neumann boundary condition.

The following lemma is needed for the proof ofTheorem 1.3.

Lemma 2.1. (Li and Tam[13]) Let M be a complete Riemannian manifold. LetH0
D(M) be

the space of bounded harmonic functions with finite energy and denote byH1(L2(M)) the
first L2-cohomology of M. Then the number of non-parabolic ends of M is bounded from
above bydimH0

D(M) ≤ dimH1(L2(M))+ 1.
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3. Proofs of the results

Proof of Theorem 1.2. LetN be anm-dimensional complete manifold with non-positive
sectional curvature andf : M → N be a harmonic map with finite energy. Denote bye
the energy density off . It follows from (2.1), (2.6) and (2.7)and the non-positivity of the
sectional curvature ofN that

1

2
�e ≥

(
1 + 1

2nm

)
|∇√

e|2 − n2

4
|H|2e. (3.1)

Letψ ∈ H1,2(M) be a compactly supported function. Replacingψ in (1.1)byψ2(n−1)/(n−2)

and using the Hölder inequality, we arrive at

c

(∫
M

|ψ|2(n−1)/(n−2)
)(n−1)/n

≤ 2(n− 1)

n− 2

(∫
M

ψ2(n−1)/(n−2)
)1/2 (∫

M

|∇ψ|2
)1/2

,

which gives(∫
M

|ψ|2n/(n−2)
)(n−2)/n

≤ 4(n− 1)2

(n− 2)2c2

∫
M

|∇ψ|2 ≡ c′
∫
M

|∇ψ|2. (3.2)

Fix ap ∈ M and chooseφ to be a non-negative cut-off function with the properties:

φ =
{

1 onB(p, r),

0 onM \ B(p,3r)

and

|∇φ| ≤ 1

r
,

whereB(p, r) denotes the geodesic ball of radiusr with centerp. Multiplying (3.1)by φ2

and integrating overM, one gets from the divergence theorem that(
1 + 1

2nm

) ∫
M

|∇√
e|2φ2

≤ n2

4

∫
M

φ2|H|2e+ 1

2

∫
M

φ2�e = n2

4

∫
M

φ2|H|2e− 2
∫
M

√
eφ∇√

e∇φ. (3.3)

Set

A0 =
(∫

M

|H |2
)2/n

;

then

n2A0c
′

4
≤ 1. (3.4)
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It follows from the Hölder inequality and(3.2) that∫
M

φ2|H|2e≤
(∫

M

|H|n
)2/n (∫

M

(φ
√
e)2n/(n−2)

)(n−2)/n

≤ A0c
′
∫
M

|∇(φ√e)|2

=A0c
′
∫
M

(|∇φ|2e+ φ2|∇√
e|2 + 2φ

√
e∇√

e∇φ). (3.5)

Substituting(3.5) into (3.3), one has(
1 + 1

2nm
− n2A0c

′

4

) ∫
M

φ2|∇√
e|2

≤ 2

(
n2A0c

′

4
− 1

) ∫
M

√
eφ∇√

e∇φ + n2A0c
′

4

∫
M

|∇φ|2e

≤
(

1 − n2A0c
′

4

) (∫
M

e|∇φ|2 +
∫
M

φ2|∇√
e|2

)
+ n2A0c

′

4

∫
M

|∇φ|2e. (3.6)

Therefore

1

2nm

∫
M

φ2|∇√
e|2 ≤

∫
M

|∇φ|2e,

which implies that∫
B(p,r)

|∇√
e|2 ≤

∫
M

φ2|∇√
e|2 ≤ 2mn

∫
M

|∇φ|2e ≤ 2mn

r2

∫
B(p,3r)\B(p,r)

e.

Letting r → ∞, the right-hand side tends to 0 sincef has finite energy. Hencee is
constant. But from the proof ofLemma 3.1(see below), we know thatM has infinite
volume. Therefore, we conclude fromE(f) < ∞ thate = 0. This completes the proof of
Theorem 1.2. �

It has been shown by Schoen and Yau that any smooth map of finite energy from a com-
plete Riemannian manifoldM to a compact manifold with non-positive sectional curvature
is homotopic to a harmonic map on each compact set ofM. ThusTheorem 1.2implies
immediately the following

Corollary 3.1. Let M be ann(≥3)-dimensional complete,non-compact, immersed space-like
submanifold inRn+pp and let N be a compact manifold with non-positive sectional curva-
ture. Assume that the inequalities(1.1) and (1.2)hold. Iff : M → N is a smooth map with
finite energy, then f is homotopic to constant on each compact set.

As an application of this corollary, one has the following result the proof of which is similar
to that of the corollary to Theorem 1 in[17].

Corollary 3.2. Let M be as inTheorem 1.2and let D be a compact domain in M with smooth
simply connected boundary. Then there exists no non-trivial homomorphism fromπ1(D)

into the fundamental group of a compact manifold with non-positive sectional curvature.
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Theorem 1.1follows fromTheorem 1.2and the next lemma.

Lemma 3.1. Let M be ann(≥3)-dimensional complete non-compact Riemannian manifold.
Assume that the Sobolev inequality(1.1)holds on M. If M has at least two ends, then there
exists on M a non-constant bounded harmonic function with finite Dirichlet energy.

Proof. Observe that the inequality(1.1) implies the inequality(3.2). Thus, according to
Theorem 2 in[3], it suffices to show that each end ofM has infinite volume. Since the
Sobolev inequality holds onM, it is known that the isoperimetric inequality holds onM
[23]. Thus, there exists a positive constantC2 such that for any bounded open setΩ ⊂ M,
we have

(V(Ω))(n−1)/n ≤ C2A(∂Ω),

whereV(Ω) andA(∂Ω) denote the volume ofΩ and the area of∂Ω, respectively. If we let
V(x0, s) = V(s) be the volume of the geodesic ballB(x0, s) inM, then

d

ds
V(s) = A(∂B(x0, s)).

Hence, settingΩ = B(x0, s) in the isoperimetric inequality, we get

V(s)(n−1)/n ≤ C2V
′(s)

for all s. Integrating yieldsV(s) ≥ (nC2)
−nsn. Now letK ⊂ M be a compact subset ofM

and letE be a non-compact component ofM \ K. If E has finite volume, chooseL big
enough such that

(nC2)
−nLn > V(E).

Let x be a point inE such that dist(x, ∂E) ≥ L, then

V(E) ≥ V(B(x, L)) ≥ (nC2)
−nLn > V(E).

This is a contradiction which shows that each end ofM has infinite volume. The proof of
Lemma 3.1is completed. �

Proof of Theorem 1.3.

(i) Let N be anm-dimensional complete manifold with non-positive sectional curvature.
We shall show that any harmonic mapf : M → N with finite energy is constant. This
fact, combining withLemma 3.1, will imply thatM has only one end. Since the index
of �+ (n2/4)|H|2 is zero, we know from the definition that∫

M

|∇ψ|2 ≥ n2

4

∫
M

|H|2ψ2

for any compactly supportedψ ∈ H1,2(M).
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Let e = e(f). Replacingψ by
√
e with φ ∈ C∞

0 we obtain

n2

4

∫
M

|H|2eφ2 ≤
∫
M

e|∇φ|2 +
∫
M

φ2|∇√
e|2 + 2

∫
M

√
eφ∇√

eφ

=
∫
M

e|∇φ|2 +
∫
M

φ2|∇√
e|2 − 1

2

∫
M

φ2�e. (3.7)

Observe that(3.1)also holds on ourM. Thus, we have (cf.(3.3)):

−1

2

∫
M

φ2�e ≤ n2

4

∫
M

|H|2eφ2 −
(

1 + 1

2nm

) ∫
M

|∇√
e|2φ2. (3.8)

Combining(3.7) and (3.8), we have

1

2nm

∫
M

|∇√
e|2φ2 ≤

∫
M

e|∇φ|2.

Choosing the same functionφ as inTheorem 1.2we obtain∫
B(p,r)

|∇√
e|2 ≤ 2nm

r2
E(f).

Letting r → ∞ we find thate is a constant. Since the Sobolev inequality(1.1)holds
onM, we know from the proof ofLemma 3.1that vol(M) = ∞. Thuse = 0. Observe
that if we do not assume that the Sobolev inequality(1.1) holds onM, we can still
conclude thate = 0. In fact, one obtains by substituting the aboveψ into (3.7) and
using the fact that e is constant that

n2

4

∫
B(p,r)

|H|2e ≤ 1

r2

∫
B(p,3r)\B(p,r)

e.

If e �= 0, then we get by lettingr → ∞ thatH ≡ 0. Hence,(2.1) implies thatM has
non-negative Ricci curvature and so vol(M) = ∞ [22]. This is a contradiction since
E(f) <∞. Hence f is a constant.

(ii) Since� + (n2/4)|H|2 has finite index, one can use the same arguments as in[7] to
show that there exists a compact setΩ ⊂ M such that the operator� + (n2/4)|H|2
when restricted to compactly supportedH1,2 functions onM \Ω has index zero. This
is equivalent to say∫

M\Ω
|∇ψ|2 ≥ n2

4

∫
M\Ω

|H|2ψ2 (3.9)

for all compactly supportedH1,2 functionψ onM \ Ω. We can assume thatΩ ⊂
B(p,R0) for somep ∈ M andR0 > 0. The monotonicity of eigenvalues[7] implies
that for anyψ ∈ H1,2(M \ B(p,R0)) with compact support, it holds∫

M\B(p,R0)

|∇φ|2 ≥ n2

4

∫
M\B(p,R0)

|H|2φ2. (3.10)
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By choosingψ = φh with φ being a non-negative compactly supported function on
M \ B(p,R0), we have

n2

4

∫
M\B(p,R0)

φ2|H|2h2

≤
∫
M\B(p,R0)

|∇φ|2h2 + 2
∫
M\B(p,R0)

φh∇φ∇h+
∫
M\B(p,R0)

φ2|∇h|2

=
∫
M\B(p,R0)

|∇φ|2h2 −
∫
M\B(p,R0)

φ2h�h. (3.11)

In the proof ofLemma 3.1, we showed that each end ofM has infinite volume.
Since the Sobolev inequality(1.1)holds onM, we can use the same arguments as in
the proof of Theorem 3 in[14] to show that each end ofM is non-parabolic. Thus
according toLemma 2.1, in order to show thatM has finitely many ends, we need
only to show thatM has finite firstL2-Betti number, i.e. dimH1(L2(M)) < ∞.
For anyL2 harmonic 1-formw onM, let h = |w| be the length ofw and denote
by w∗ be the vector field dual tow. It follows from the Bochner formula and(2.1)
that

1

2
�h2 = Ric(w∗, w∗)+ |∇w|2 ≥ −n

2

4
|H|2h2 + |∇w|2,

where∇w denotes the covariant derivative ofw.
By using the same arguments as in the proof of Theorem 5 in[14], we have

|∇w|2 ≥ n|∇h|2
n− 1

.

Hence,

h�h ≥ −n
2

4
|H|2h2 + |∇h|2

n− 1
. (3.12)

Substituting(3.12)into (3.11), we get∫
M\B(p,R0)

φ2|∇h|2 ≤ (n− 1)
∫
M\B(p,R0)

|∇φ|2h2. (3.13)

Since(1.1), (3.12) and (3.13)hold onM, one can then use the same discussions as in
the proof of Theorem 5 in[14] to show that dimH1(L2(M)) < ∞. This completes
the proof ofTheorem 1.3. �
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