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Abstract

Let M be am-dimensional complete non-compact space-like submanifold in a pseudo-Euclidean
SpaceR;',“’ of index p. In this paper, we find sufficient conditions faf to have only one end or
finitely many ends.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction and main results

Let R;',J”’ be an(n + p)-dimensional pseudo-Euclidean space of indexamely the
vector spac®"*? endowed with the metric

()= (@dxHZ + - ()2 — ( dTH2 — (P2,

where (x1, ... , x,4,) are the canonical coordinates Rj,””. A smooth immersiony :
M — R™*P of ann-dimensional manifoldV is said to be apace-like submanifoldf the
induced metric viay is a Riemannian metric oM which, is also denoted bjy ).

Space-like submanifolds have been studied extensively. Calabi raised the Bernstein prob-
lem for space-like extremal hypersurfaces in Minkowski sp%qfél, and proved that such
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hypersurfaces have to be hyperplanes when 4 [2]. Cheng and Yau solved the prob-
lem for alln [5]. Generalizing an earlier result of Palnj&6], Xin [19] has characterized
space-like hyperplanes as the only complete constant mean curvature space-like hypersur-
faces irRTrl whose image under the Gauss map is bounded in the hyperbolic space. Later,
by an elegant argument the above theorem of Xin was improved by Capiéteadd Xin and
Ye [21] independently. They showed that a complete space-like hypersurface of constant
mean curvature iﬁtf+l whose image under the Gauss map is contained in a horoball of the
hyperbolic spackl”+1(—1) is a hyperplane. By using the maximum principle due to Omori
[15], Aledo and Aliag1] have shown that the only complete space-like hypersurfaces of
constant mean curvature Riﬁl which are bounded between two parallel space-like hy-
perplanes are the space-like hyperplanes. It should be mentioned that the corresponding
result of Aledo—Alias’ theorem for minimal surfaces in Euclidean 3-space turns out to be
false[8]. On the other hand, Treiber§s8] constructed many non-linear examples of com-
plete space-like hypersurfaces with non-zero constant mean curvature. Recently, in a series
of interesting papers, Xif20] and Jost and Xifi9—11] proved various metric unigueness
theorems for space-like submanifoldsRfj"” with parallel mean curvature vectors.

In this paper, we study the topology of space-like submanifolcﬂéﬁff by using a nice
idea of Cao et al. ifi3]. Our first result can be stated as follows.

Theorem 1.1. LetM be am(>3)-dimensional complefaon-compacimmersed space-like
submanifold irR’,*” and denote by the mean curvature vector of M. Assume that the
Sobolev inequality holds on Nhat is there exists a constaat> 0, such that

(n=1)/n
c( / |w|”/<"—1)) < / VYl (1.1)
M M

for any compactly supported functioh € Hj 2(M). If the total mean curvature of M
satisfies

_ n
/ H" < (M> : (1.2)
M (n—Dn
then M has only one end

It should be noticed that the submanifoldgimeorem 1.&re not required to have parallel
mean curvature vectors. We believe that the Sobolev inequality actually holds on space-like
submanifolds irR,"” with small total mean curvature.

In orderto prov& heorem 1. lwe firstly establish a non-existence theorem for non-constant
harmonic maps with finite energy. That is, we have

Theorem 1.2. LetM be am(>3)-dimensional completaon-compacimmersed space-like
submanifold irRZ’“". Assume that the inequalitiés.1) and (1.2hold. Then any harmonic
map with finite energy from M to a complete manifold with non-positive curvature is a con-
stant. In particular any harmonic function on M with finite Dirichlet energy is constant

Theorem 1.1s a consequence dheorem 1.2nd an existence theorem for non-constant
harmonic functions with finite Dirichlet energy (seemma 3.).
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We fix some notation in order to state our next result. elbe a complete Riemannian
manifold, and lety : M — R be a differentiable function. Consider the elliptic operator
L = A + g associated to the quadratic form:

(ﬁ—Lf>=—/ fo=f (V12 — ).
M M

Heref : M — Ris a piecewise smooth function with compact supparis the Laplacian

andV f is the gradient off. The index ofL is defined to be the supremum, over compact

domains ofV, of the number of negative eigenvalued.afith Dirichlet boundary condition.
Now we can state our next theorem as follows.

Theorem 1.3. LetM be am(>3)-dimensional completaon-compacimmersed space-like
submanifold irRZ+p and assume that the Sobolev inequé(ityl) holds on M

(i) If the index of the operatah + (n2/4)|H|? is zerq then M has only one end
(i) If A + (n?/4)|H|? has finite indexthen M has finitely many ends

2. Preliminaries

In this section, we list some known facts about space-like submanifolé T and
harmonic maps between Riemannian manifolds.

Let M be ann-dimensional complete space-like submanifolcﬂﬁﬂ’. Choose a lo-
cal Lorentzian frame fieldey, ... , e, ent1, ... , enyp} @long M with dual frame field

{W1, ..., Wy, Wyt - .. , Wy p) SUCh thater, ... | e,, are tangent td4. Let{wAB}’}fé’:1
be the corresponding connection forms. We agree with the following range of indices:

iLjk,...=1,...,n; s t,...=n+1 ... n+p.

The induced Riemmanian metric & is given by d2, = 3", w? and the structure equations
of M are

dw; = Zwik Awg,  wij + wji =0,
%

1
Q25 = dwij - Z Wik N\ Wkj = _E Z Rijkwi A wy,
k k.l
where(Rjj ) is the curvature tensor @ff. The Gauss equation @f is given by
dwij = Z Wik N\ Wkj — Z Wis N Ws;j.
k K

By Cartan’s lemma we have

P s .
Wsj = Zh”w],
J



450 Q. Wang, C. Xia/Journal of Geometry and Physics 52 (2004) 447-457

wherehj; are the components of the second fundamental forid of R’*”. We have from
the Gauss equation that

Rijw = —Z(hfk il = hithj)-

s

The mean curvature vector o in R}, is defined by
1
5,0
The Ricci tensor oM is given by
Rij =) Ruig=— ) (higltj = highj).
k s,k
from which it follows that

Ricy > —3n?H|?. (2.1)

Now let N be a complete Riemannian manifold of dimensioand letf : M — N be
a harmonic map. Take a local orthonormal frafagl”_; of N and denote byd,}”_; the
dual coframe and by6,s}, ,_, the corresponding connection forms. L(@.g,s) be the
curvature tensor a¥; then we have:

W0 =) Oup AOp.  Oup+0pa =0,
s

1
d@aﬂ = Z Ouy N Oy — > Z Kopy50,05.
Y 7,8

Define fyi, 1<a<m,1<i<nby

F*Ou) =Y fuii. (2.2)
i
The energy density( f) is given by
eH=) fi
ol
Taking the exterior differentiation ¢R.2), we get

FH(d0,) =Y (dfai A wi + fui dwy),

which gives

i

Z dfei — Z fajwij — f*Oup) fpi | Aw; =0. (2.3)
J
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Define fyj by
Afui + Y foif*Opa) + Y fajwii = Y fuijw). (2.4)
B J J

Then(2.3) and (2.4)mply that fuij = fiji and f is harmonic means
Y fui =0, Ya=1..,m

Exterior differentiating2.4), we get

> (dfail + Y (faiwit + fowii) + Y, i f*(eﬁa)) A wy
J B

/
1 1
=5 Z Rijki fajwi A wy + > Z Kapys fgi fyi fsrwi A wy. (2.5)
ikl .5kl

Define

Z Saikwi = dfgij + Z(faikwkj + fokjwki) + Z 16 [ (Oup):
k k B

then(2.5)implies that

Saikl = faik = Z Rijik foj + Z Kopys f8i fyi fok-

J B,v.8

Sete = e(f) and letA be the Laplacian operator acting on functionsnFrom the above
formula, one can easily get the following Bochner type formula for harmonic maps between
Riemannian manifoldf5]:

1
She = DUSE D Rifaifai— Y. Kapysfuilsifyifsj- (2.6)

a,i, j a,i,j a,B,1,8,1,j

The following estimate was made by Schoen and Y4

Y o fhi= (1+ i) Vel 2.7)

o, j

Recall (se¢12]) that an endE of a complete manifold/ is non-parabolic ifE admits a
positive Green’s function with Neumann boundary condition.
The following lemma is needed for the proofTieorem 1.3

Lemma2.1. (Liand Tam[13]) Let M be a complete Riemannian manifold. E@(m be

the space of bounded harmonic functions with finite energy and dendfé @y (M)) the

first L2-cohomology of M. Then the number of non-parabolic ends of M is bounded from
above bydim H3 (M) < dim HX(L2(M)) + 1.
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3. Proofs of theresults

Proof of Theorem 1.2. Let N be anm-dimensional complete manifold with non-positive
sectional curvature and : M — N be a harmonic map with finite energy. Denoteddy
the energy density of. It follows from (2.1), (2.6) and (2.7&nd the non-positivity of the
sectional curvature oV that

%Aez <1+—) IV /el? ——IHI e. (3.1

Lety € Hy 2(M) be acompactly supported function. Replacini (1.1)by y2—b/(=2)
and using the Holder inequality, we arrive at

c <\//V[ |w|2(n—1)/(l‘l—2)) < </ I)02(1’! l)/(l’l 2)> (/M |Vw|2> ,

which gives
2 2 (”—2)/” 1)2 ) )
</|¢V““”> < 22/|vw —c/‘ww| (32)
M (n 2)
Fix a p € M and choose to be a non-negative cut-off function with the properties:
1 onB(p,n),
10 onm\ B(p, 3
and
1
Vol < -,
r

whereB(p, r) denotes the geodesic ball of radiuwith centerp. Multiplying (3.1) by ¢?
and integrating oveM, one gets from the divergence theorem that

1 2.2
<1+ m) /M|V«/z| (0]

2 2
5"—/ ¢2|H|2e+}f ¢2Ae:n—/ ¢2|H|ze—2/ JepV/eVp.  (3.3)
4 Ju 2 Ju 4 Ju M

2/n
Ao=</|HF) ;
M

then
n2Aoc
4

Set

<1 (3.4)
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It follows from the Holder inequality an¢B.2) that

2/n (n=2)/n
/ ¢2|H|2es< / |H|") ( / (WE)Z"“"—Z)) < Aoc' f V(o)
M M M M

= Aoc’ f (IVo|2e + ¢?|V/e|? + 2¢/eV/eV ). (3.5)
M

Substituting(3.5) into (3.3), one has

1 2Aoc
<1+ﬁf )/ P29 /el

52< Ao )f Jesveve+ /fM|V¢|2e

nonc 2 2 2 nZAoc/ 2
< (1— 7 )(/M e|Vo| +/M¢ Vel >+ T/M|V¢| e. (3.6)

Therefore

an/ P?|V/el? < f|V¢|2

which implies that

2mn
| 19ver = [ @19 ver <amn [ vaite< 25 [ .
B(p,r) M M r B(p,3r)\B(p,r)

Letting » — oo, the right-hand side tends to 0 singehas finite energy. Hence is
constant. But from the proof dfemma 3.1(see below), we know tha¥/ has infinite
volume. Therefore, we conclude froB( f) < oo thate = 0. This completes the proof of
Theorem 1.2 O

It has been shown by Schoen and Yau that any smooth map of finite energy from a com-
plete Riemannian manifolslf to a compact manifold with non-positive sectional curvature
is homotopic to a harmonic map on each compact sé offhusTheorem 1.2mplies
immediately the following

Corollary 3.1. LetMbe am(>3)-dimensional completaon-compacimmersed space-like
submanifold irR’,iJ”” and let N be a compact manifold with non-positive sectional curva-
ture. Assume that the inequaliti€s 1) and (1.2jold. If f : M — N is a smooth map with
finite energythen f is homotopic to constant on each compact set

As an application of this corollary, one has the following result the proof of which is similar
to that of the corollary to Theorem 1 j&a7].

Corollary 3.2. LetMbe asimheorem 1.2nd let D be a compact domain in M with smooth
simply connected boundary. Then there exists no non-trivial homomorphismrfi@am
into the fundamental group of a compact manifold with non-positive sectional curvature
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Theorem 1.¥ollows from Theorem 1.2and the next lemma.

Lemma3.1. LetM be am(>3)-dimensional complete non-compact Riemannian manifold.
Assume that the Sobolev inequa(ityl) holds on M. If M has at least two endken there
exists @ M a non-constant bounded harmonic function with finite Dirichlet energy

Proof. Observe that the inequalifil.1) implies the inequality(3.2). Thus, according to
Theorem 2 in[3], it suffices to show that each end &f has infinite volume. Since the
Sobolev inequality holds oM, it is known that the isoperimetric inequality holds dh
[23]. Thus, there exists a positive constahtsuch that for any bounded open s2tc M,
we have

(V(2) D/ < C,A(32),

whereV(£2) and A (9£2) denote the volume a2 and the area ais2, respectively. If we let
V(xo, s) = V(s) be the volume of the geodesic b&lxg, s) in M, then

Ev(s) = A(dB(xp, 5)).
ds

Hence, setting2 = B(xp, s) in the isoperimetric inequality, we get
V)" D" < €2V (s)

for all 5. Integrating yields/(s) > (nCz)™"s". Now let K C M be a compact subset &1
and letE be a non-compact component &f \ K. If E has finite volume, choosg big
enough such that

(nC)™"L" > V(E).
Let x be a point inE such that digtx, 9F) > L, then
V(E) = V(B(x, L)) = (nCG)™"L" > V(E).

This is a contradiction which shows that each endfhas infinite volume. The proof of
Lemma 3.lis completed. O
Proof of Theorem 1.3.

(i) Let N be anm-dimensional complete manifold with non-positive sectional curvature.
We shall show that any harmonic mgp M — N with finite energy is constant. This
fact, combining withLemma 3.1 will imply that M has only one end. Since the index
of A + (n?/4)|H|? is zero, we know from the definition that

2
[wui=" [ ey
M M

for any compactly supportegl € H1 2(M).
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Lete = e(f). Replacingy by /e with ¢ € C§° we obtain

2
”—/ |H|2e¢25/ e|V¢|2+f ¢>2|w2|2+2f JepV/ed
4 Jy M M M

1
=/ e|V¢>|2+f ¢2|Vﬁ|2—§f ¢?Ae. 3.7)
M M M
Observe thaf3.1)also holds on ouM. Thus, we have (c{3.3)):
1 2 n® 2,2 1 2,2
—= A — H -1+ — \Y% . .
5 [ otae =" [ iHites (+2nm)/M|¢E|¢ (3.9)

Combining(3.7) and (3.8)we have

1 2,2 2
an/MIV«/EI ¢ sfMewm .

Choosing the same functighas inTheorem 1.2ve obtain

2nm

/ IVVel? < —5-E(p.
B(p.r) r

Lettingr — oo we find thate is a constant. Since the Sobolev inequafityl) holds
on M, we know from the proof oEemma 3.1that vo M) = co. Thuse = 0. Observe
that if we do not assume that the Sobolev inequdlityl) holds onM, we can still
conclude that = 0. In fact, one obtains by substituting the abavénto (3.7) and
using the fact that e is constant that
2
I’l_ H |Ze < i e.
4 Jppn r% JB(p.30\B(p.)

If e # 0, then we get by letting — oo thatH = 0. Hence(2.1) implies thatM has

non-negative Ricci curvature and so @) = oo [22]. This is a contradiction since

E(f) < oo. Hence fis a constant.

(i) Since A 4+ (n2/4)|H|? has finite index, one can use the same arguments [} io
show that there exists a compact $etc M such that the operatax + (n2/4)|H|?
when restricted to compactly supportdg » functions onM \ £2 has index zero. This
is equivalent to say

2
f |Wf|zz”—f IH|2y? (3.9)
M\2 4 Jme

for all compactly supported; » functiony on M \ £2. We can assume th& C
B(p, Rp) for somep € M andRp > 0. The monotonicity of eigenvalu¢g] implies
that for anyyr € Hy 2(M \ B(p, Ro)) with compact support, it holds

2
/ Vo2 = / IH 262, (3.10)
M\B(p,Ro) 4 Jm\B(p, Ro)
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By choosingy = ¢h with ¢ being a non-negative compactly supported function on
M \ B(p, Ro), we have

n

7 ¢*IHI*h*
4 Jm\sp. ko)
272 2 2
5/ IVo|?h +2/ ¢hV¢Vh+/ ¢?|Vh|
M\B(p. Ro) M\B(p. Ro) M\B(p. Ro)
=/ |V¢>|2h2—/ N (3.11)
M\B(p,Ro) M\B(p,Ro)

In the proof ofLemma 3.1 we showed that each end #f has infinite volume.
Since the Sobolev inequalifit.1) holds onM, we can use the same arguments as in
the proof of Theorem 3 ifil4] to show that each end @f is non-parabolic. Thus
according toLemma 2.1 in order to show thad/ has finitely many ends, we need
only to show thatM has finite firstL2-Betti number, i.e. dimH1(L3(M)) < oo.

For any L2 harmonic 1-formw on M, leth = |w| be the length ofw and denote
by w* be the vector field dual tw. It follows from the Bochner formula ang.1)
that

1 . 2
SAR? = Ricw", w*) + |Vl = _%|H|2h2 + Vw2,

whereVw denotes the covariant derivative of
By using the same arguments as in the proof of Theoren| B we have

|[Vwl|? > M
~n-1"
Hence,
2 2
Vh
hAh >~ |H2h% + [VhZ (3.12)
4 n—1

Substituting(3.12)into (3.11) we get
/ ¢*IVhI> < (n — 1) |V |2h?. (3.13)
M\B(p,Ro) M\B(p,Ro)

Since(1.1), (3.12) and (3.13)old onM, one can then use the same discussions as in
the proof of Theorem 5 ifil4] to show that dimH1(L2(M)) < oo. This completes
the proof ofTheorem 1.3 O
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